Category: Chemistry

The Problem with Battery-Powered Planes

The Problem with Battery-Powered Planes

The Problem with Battery-Powered Planes

02/13/18

“What do we need to overcome before we make battery-powered planes?”

 

Although promising, battery-powered planes have a major hurdle to overcome before they make any major traction. As it stands, electrochemical batteries have only 1/60th the energy density of conventional plane fuels. This is further compounded by the fact that such batteries are heavier to equip, meaning more weight on the aircraft and a reduced ability to fly. However, if we can overcome these problems, whether it be through a new type of battery or improved electrical motors, then battery-powered planes are poised to disrupt the entire aviation industry!

Advertisements
Solid Fuels

Solid Fuels

Solid Fuels

01/18/17

“Can fuel exist in a solid form?”

 

When we think of fuel, we often think of the liquid petroleum that exists within our car. However, not all fuel has to be in a fluid form. In fact, there is such a thing as solid fuels to create heat and power. Many of these solid fuels are very well known such as coal, plant biomass, charcoal, wood, and even municipal waste!

Corrosion

Corrosion

Corrosion

12/01/17

“How do metals waste away with time?”

 

Metals are some of the most widely used materials in the world. However, nothing within the realm of physics lasts forever. If a metal is immersed in an atmosphere, then it will be surrounded by chemicals alien to its own. Chemical reactions are bound to occur, and over time this metal will decay and waste away in a process known as corrosion. Corrosion is a very important engineering factor, especially for public infrastructure. So much so that in 1998 alone the total annual direct cost of corrosion in the U.S. was around. $276 billion!

The Dew Point

The Dew Point

The Dew Point

11/19/17

“How can we measure the point in which saturation occurs?”

 

When it gets humid outside, it’s very easy for moisture to appear on surfaces. However, why does that happen? Well, the answer lies in a most interesting property called the Dew Point. The dew point is the temperature at which the gas in a given area will condense into a liquid. If an object cooler than this point comes in contact with air, then it is possible for dew to form. HVAC system engineers must keep this value in mind when designing dehumidifier equipment.

The Heat Index

The Heat Index

The Heat Index

Isaac Gendler

11/18/17

“How can we measure how a temperature really feels?”

 

We all know how to read a normal thermometer. However, when it gets really humid, then oftentimes it will feel much hotter than it really is. So how can we use our scientific mindset to quantify this phenomenon? Well, what if we were to create a formula that combines both the absolute temperature and the relative humidity to produce a value? Well, this is the idea behind the heat index and is used by weather forecasters and HVAC systems analysts all over the world.

Environmental Monitoring

Environmental Monitoring

Environmental Monitoring

10/27/17

“How can we empirically analyze environmental quality?”

 

One of the most important tasks that an environmental engineer or scientist must do is analyze the health and quality of the surrounding environment. However, often times qualitative methods such as visual observation do not work. So how can the necessary quantitative information be obtained? Well, what if we were to simply take samples of the environment, whether it be the soil or air, and then place it into a lab for physical, chemical, and even biological analysis? Well, this process is known as Environmental Monitoring and has resulted in some of the most important discoveries, such as climate change and soil degradation.

The Strange Second State of Water

The Strange Second State of Water

 

The Strange Second State of Water

09/17/17

“Can water have a second liquid state?”

 

Water is a most peculiar molecular compound. Although this material composes over sixty percent of the human body and the vast majority of the Earth’s surface area, we still know very little about the chemical and physical properties and behaviors of this element. And this idea could not be better exemplified by a most recent discovery lead by a highly intelligent group of scientists.

At Oxford University, A group of physicists led by the postdoctoral research assistant Laura Martinez Maestro had decided to conduct a new experiment on water (Crew, Bec). For this, they took a sample of water at zero degrees Celsius and increased the temperature slowly until it reached one hundred degrees Celsius while measuring the thermal conductivity, refractive index, conductivity, surface tension, and the dielectric constant. Once the water hit, 40 degrees Celsius, its properties started to shift drastically, and once it had hit 60 degrees Celsius all of its properties had changed into something new. Specifically, the temperature of change was 64 degrees Celsius for thermal conductivity, 50 degrees Celsius for refractive index, about 53 degrees Celsius for conductivity, and 57 degrees Celsius for surface tension.

Why does this happen? Although everything seems murky at the moment, this phenomenon might be a consequence of the fact that water molecules only have a very weak bond with one another, and that the bond between oxygen and hydrogen is far greater than the hydrogen-hydrogen bonding. As a result, the molecular structure of  molecules is constantly changing and reforming, leading many to believe that this might be the cause for the strange second stage of matter

 

References

Crew, Bec. “Physicists Just Discovered a Second State of Liquid Water.” ScienceAlert, ScienceAlert, 14 Nov. 2016, http://www.sciencealert.com/physicists-just-discovered-a-second-state-of-liquid-water.